1.
Ruiz, I. M. et al. Connecting localized DNA strand displacement reactions. Nanoscale 7, 12970–12978 (2015).
2.
Arbona, J.-M., Aimé, J.-P. & Elezgaray, J. Cooperativity in the annealing of DNA origamis. The Journal of chemical physics 138, 01B606 (2013).
3.
Song, J. et al. Direct visualization of transient thermal response of a DNA origami. Journal of the American Chemical Society 134, 9844–9847 (2012).
4.
Arbona, J.-M., Aimé, J.-P. & Elezgaray, J. Folding of DNA origamis. Frontiers in Life Science 6, 11–18 (2012).
5.
Arbona, J. M., Aimé, J.-P. & Elezgaray, J. Folding of small origamis. The Journal of chemical physics 136, 02B605 (2012).
6.
Renˇciuk, D., Sugiyama, H., Arbona, J.-M., Aimé, J.-P. & Mergny, J.-L. Guided Assembly of Tetramolecular GQuadruplexes. (2013).
7.
Yatsunyk, L. A. et al. Guided assembly of tetramolecular G-quadruplexes. ACS nano 7, 5701–5710 (2013).
8.
Wong, H., Arbona, J.-M. & Zimmer, C. How to build a yeast nucleus. Nucleus 4, 361–366 (2013).
9.
Arbona, J.-M., Herbert, S., Fabre, E. & Zimmer, C. Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations. Genome Biology 18, 81 (2017).
10.
Arbona, J. M., Aimé, J.-P. & Elezgaray, J. Modeling the mechanical properties of DNA nanostructures. Physical Review E 86, 051912 (2012).
11.
Arbona, J.-M., Elezgaray, J. & Aimé, J.-P. Modelling the folding of DNA origami. EPL (Europhysics Letters) 100, 28006 (2012).
12.
Arbona, J.-M. Origami d’ADN: étude des propriétés mécaniques et du processus de formation. (Bordeaux 1, 2012).